

Shape the FUTURE of DRIVING

Jonas Ekmark
Product Area Owner, New Technology

Presentation outline

- What is **Zenuity**?
- What is most difficult in designing selfdriving vehicles?
- How to prove a self-driving vehicle is sufficiently safe?
- Alternative approaches
- Conclusion

Zenuity's founding fathers

19th April 2017

Volvo Cars, the premium car maker, and Autoliv, the worldwide leader in automotive safety systems, have signed a final agreement to establish a new joint venture called Zenuity to develop software for autonomous driving and driver assistance systems

Zenuity's technology scope

ZENUITY Page 4

Zenuity today

Started April 18th 2017 with 200 employees

ZENUITY
Page 5

Zenuity's way to market

Our Product Roadmap

Combining driver support (ADAS) and autonomous driving

From Driver Support to Autonomous Driving

Fundamental change for safety concepts

The Challenge

Driver out of the loop

Self-driving vehicles must be able to handle all foresee-able situations of the Operational Design Domain

(and *prove* that it can!)

This puts unique requirements on the vehicle, its sensor, actuators and electrical architecture.

Unsupervised driving

Safety Case:

"Structured **argument**, supported by **evidence**, intended to justify that the **AD functionality** is acceptably safe for **all relevant traffic situations** and **all relevant environmental conditions**."

Overall safety requirement: Fewer caused accidents (by some margin) than human driver

Topic	1/frequency	hours	Market
Road fatalities	150 million km	4 x 10E6 h	U.S.
Rail fatalities	2.5 billion passenger km	4 x 10E7 h	U.K.
Air fatalities	50 billion passenger km	1 x 10E8 h	U.K.

False AEB	0.5 million km	1 x 10E4 h	Global
Safety Driver interventions (High Score 2018)	20 thousand km	7 x 10E2 h	CA

ZENUITY
Page 10

How to design and prove self-driving to be sufficiently safe?

- **Define** the target. The product should be sufficiently safe when used by real customers in the real world.
- **Divide and conquer**, establish testable requirements for components
 - Use sufficient detail; False Negative performance depends on range, illumination, precipitation etc.
 - Reduce Operational Design Domain if needed
 - Analyzable vs non-analyzable components

- Use a combination of field testing, simulation, and selected scenarios at test track for verification
- Show that there is enough redundance and independence to reach the overall requirement (worst case scenarios occur less than 10E-8 /h?)
- Done!

Deep Neural Networks

2017.09.12

Deep Learning

On the other hand...

- Lidar detections are based on well-known physics and relatively simple algorithms
- Performance can be predicted also outside of the tested envelope (to some extent)
- When exposed to real life objects different to those used in verification tests, it is likely to detect them as well.
- Similar reasoning can apply to radar and ultrasonic

Perception, decomposition example

Verification & Validation strategy

Safety verification of All major subsystems for All relevant scenarios Scenario DB Decision-Perception Objects Planned Path **Vehicle Control** Making Traffic/Test track with Ground Truth Traffic/Test track with Ground Truth Formal methods Resimulation Augmented/Virtual Data Closed-loop simulation

Building complete customer features

Highway Pilot

Perception

Decision-Making

Vehicle Control

ZENUITY

PAGE 18

Conclusions

- Zenuity develops SW for ADAS and unsupervised AD, approaching AD with its safety heritage from Volvo Cars and Autoliv
- Unsupervised Automated Driving is a huge challenge. Super-human performance needed.
- Safety verification by brute-force driving is not feasible
- Deep learning can be utilized safely by
 - parallel, independent channels with reduced functional safety requirements
 - verification by dedicated testing and various forms of simulation of modules

ZENUITY

PAGE 19

ZENUITY

Make it real.

Please visit: www.zenuity.com/career/