

Elements of Autonomous Vehicle Safety (The Super-Short Version)

AVS 2018

Prof. Philip Koopman

Carnegie Mellon University

SafeAutonomy.blogspot.com

@PhilKoopman

© 2018 Edge Case Research LLC

SURPRISE ШΟ **PROBABILITY**

SAFE

OPERATIONAL

STATE SPACE

UNSAFE! UNSAFE STATE SPACE Checker UN FAILSAFE ACTIVATED

Edge

FAILSAFE ACTIVATE

Case

Research

Planning and Control: Doer/Checker

Shutdown

ACT

AILSAFE

Low integrity Doer

- E.g., based on training data
- High integrity Checker
 - Use traditional safety methods

Perception: Robustness via Augmentation

Edge Case Research

Pseudo-realistic degradation Move and insert objects

Pedestrian Missed: Gaussian Blur

Pedestrian Missed: Gaussian Noise + Black Car

Dark vehicle added to scene

Other Techniques

- Conventional V-based software safety
 - ISO 26262, SOTIF forsafety requirements
- Rapid safety case update tooling
 - STPA plus augmented fault trees and GSN
- Architectural safety patterns
 - Doer/Checker for a fail silent channel
 - Multi-channel approach for safing mission
- Robustness/stress testing
 - Traditional robustness testing
 - Object & event edge case "zoo"

🔧 switchboard

RELIABLE SOFTWARE FOR AUTONOMY

SAFER PERCEPTION FOR AUTONOMY