Analyzing Automated Vehicle Factors Impacting Energy Consumption, Informed by Current Ride-Hailing Experience

Alejandro Henao, Joshua Sperling, Stanley Young and Jeff Gonder (NREL)

Objective: Explore energy consumption of large-scale Mobility as a Service (MaaS) AVs informed by current ride-hailing research
- Identify topics associated with each of the actors impacting energy consumption from MaaS AVs
- Examine potential energy impacts – both positive and negative – of MaaS AVs
- Highlight relevant data and needs

DATASETS

- RideAustin Data
 - RideAustin data numbers:
 - Sample dataset size: n
 - Period: June 2018 to April 2019
 - 36k unique drivers & vehicles
 - 299,000 unique rides
 - 1.5 mi average

- Consumers (Passengers)
 - Heatmap of trip destinations
 - Automated Vehicle Factors Impacting Energy Consumption

- Suppliers (Mobility as a Service providers)
 - Suppliers (Mobility as a Service providers):
 - Ride consumption
 - Passenger
 - Car share
 - Results of large-scale Mobility as a Service

- Institutional (Cities)
 - Case Study in Colorado
 - Airport analyses informing new mobility shifts [NREL/CPS-5400-71036]

- Infrastructure, Standards & Regulations
 - Suppliers (MaaS providers):
 - While it is unclear if vehicles (including EVs) used by ride-hailing drivers are more (or less) fuel efficient than the general population and/or taxi fleets, AVs have the potential to be more efficient
 - MaaS providers using AVs will have the capabilities to control the number of AVs per passenger demand, location (and re-location) of AVs, and driving behaviors; contrary to ride-hailing where drivers make many decisions
 - Estimates of deadheading from ride-hailing is 0.69 – 0.96 miles for every 1.0 mile with passengers (41% to 49% of total VMT). While commuting and driving behavior (e.g., cruising) goes away, AV fleets will still have ZOV miles due to travel from/to stations, parking, charging or fueling, re-positioning, and over-heading (dispatch to pick-up). We estimate that ZOV will go down to 0.32 – 0.60 miles for every 1.0 VMT with passengers from MaaS AVs (24% to 37.5% of total VMT).

TOPIC

<table>
<thead>
<tr>
<th>SUB-TOPIC/RESEARCH QUESTIONS</th>
<th>POTENTIAL IMPACTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Fleet</td>
<td>Will future AV fleets (including EVs) be more fuel efficient?</td>
</tr>
<tr>
<td>Supply & Demand</td>
<td>Number of AVs in the fleet per MaaS demand</td>
</tr>
<tr>
<td>Operations & Style</td>
<td>Location of AVs and driving behavior (e.g., smoothed acceleration/deceleration)</td>
</tr>
<tr>
<td>Deadheading & Idling</td>
<td>Deadheading & idling (i.e., zero occupancy vehicles or ZOV)</td>
</tr>
<tr>
<td>Mode replacement and modality style changes</td>
<td></td>
</tr>
<tr>
<td>Vehicle ownership reduction</td>
<td></td>
</tr>
<tr>
<td>Increase true ridesharing (i.e., pooling with strangers)</td>
<td></td>
</tr>
<tr>
<td>Induced travel (increases energy and mobility)</td>
<td></td>
</tr>
<tr>
<td>Relocation: residence, travel</td>
<td></td>
</tr>
<tr>
<td>Support of automated, electric/efficient, and sharing transportation; parking reduction, increases in density, multi-modal infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

Consumers (Passengers):
- MaaS AVs will intensify the mobility behavior changes we are experiencing with ride-hailing
- Negative energy impacts are associated with mode replacement of public transportation, walking, and biking; as well as induced travel
- We identified true ridesharing (pooling with strangers) as positive energy impacts of MaaS
- Reduction in vehicle ownership and driving mode replacement, as well as relocation (both for home/residence and hotel location when traveling) enabled by MaaS AVs could generate both positive and negative energy impacts.

Data & Research Needs:
Measuring vehicle occupancy per VMT and person miles traveled (PMT) is one of the key data gaps in the industry to increase mobility of people (not just vehicles) and understand energy productivity as a critical output of maximizing mobility in ride-hailing and future MaaS AVs!