A Traffic-based Method for Safety Impact Assessment of Road Vehicle Automation

Christian Rössner*, Friederike Hennecke†, Jan Sauerbier*, Adrian Zlocki*, Dirk Kemper†, Lutz Eckstein* and Markus Oeser†

Challenges

- One of the major challenges for enabling market introduction of automated driving is to identify risks and benefits of these functions.
- According to the German Ethics Commission on Connected and Automated Driving [1], “[…] the licensing of automated systems is not justifiable unless it promises to produce at least a diminution in harm compared with human driving, in other words a positive balance of risks […]”
- In order to assess this balance of risks, a method for safety impact assessment of continuously operating [2] automated driving functions with respect to human driver performance is necessary.

Method

- Based on different data sources, such as national accident statistics [3], in-depth accident data [4] and FOT-data [5], a simulation-based approach for prospective effectiveness assessment has been realized.

Results

- Accidents addressed by automated driving functions form the effectiveness fields gained from national accident statistics and in-depth accident data.
- Automated vehicles may not get involved in certain accident scenarios any longer while other, new accidents, will arise. Changes in frequencies of driving scenarios have to be assessed.
- In incident situations, the performance of automated vehicles is compared to human driver performance for obtaining a severity.

Conclusion

- The operational design domain (e.g. environmental conditions) highly affects the effectiveness of an automated driving function.
- Changes in frequencies (and thus relevance) of driving/accident scenarios have to be taken into account for safety assessment of AD.
- Human driver performance has to be modeled as a reference for assessment.

Acknowledgement

The research leading to these results has received funding from the German Federal Highway Research Agency (BASt) within the project “PotentiaI assisted driving due to increasing vehicle automation” (FXAS.026231/15/RRR). Responsibility for the information and views set out in this publication lies entirely with the authors. The authors would like to thank all partners within this project for their cooperation and valuable contribution.

Bibliography