

Trajectory Optimization for Car-Like Vehicles in Structured and Semi-Structured Environments

Clemens Nietzschmann, Sebastian Klaudt, Christoph Klas, Devid Will, Lutz Eckstein Institute for Automotive Engineering (ika), RWTH Aachen University, Germany

Trajectory Optimization

- OCP with an objective function which should be minimized for the prediction horizon *tf*
- Problem is discretized with the direct multiple shooting approach
- Quadratic cost function
- Kinematic single track model is used as system model

Environment Representation

Static Environment

- Generic interface by using ordered sampled points
- All static obstacles need to be included in the boundaries
- Smoothed cubic spline interpolation

- Road Users & VRUs are modeled as scalar potentials
- Prediction assuming a constant velocity and is matched to lanes (wherever possible)

Vehicle shape approximated by circles

Trajectory Reference Information

- Hybrid A* for path planning (parking & retrieving the vehicle)
- Boundary extraction from grid map
- Path & Boundaries are used as input for the trajectory optimization

RWTH Aachen University Campus

- Urban Driving Scenario on public streets with round-about and other road users
- Reference path and boundaries are derived from map data

ika's automated

research vehicle

• Map data is created with aerial imagery

Implementation & Testing

- Implementation of OCP in C++11
 - Prediction horizon *tf* up to 8.0 s with 0.1 s or 0.2 s steps
 - Single-threaded without dynamic memory allocations

 - Planning frequency set to 10 Hz
- ACADO Toolkit for code generation
 - *qpOases* used as solver
 - tailored C-code for integrating the system model and solving the discretized optimization problem
 - The partial derivatives of the objective function are expressed analytically and are passed as custom Cfunction
- Tested in ika's automated research vehicle for both scenarios

Acknowledgement

Research is funded by the German Federal Ministry of education and Research within the project PARIS

roundabout with

other road users

narrow passage

in parking garage

Contact

Sebastian Klaudt, M.Sc. Institute for Automotive Engineering (ika) RWTH Aachen University, Germany sebastian.klaudt@ika.rwth-aachen.de