Integrating Smart Cars in a Smart World: **A Particle Swarm Problem** Francesca M. Favarò, Shivangi Agarwal, Nazanin Nader & Sumaid Mahmood

San Jose State University, RiSA²S Lab

Highlights

GOAL: Explore rules for controlling lateral and longitudinal movement of families of Autonomous Vehicles and generalize the functionality of automatic cruise control to include multiple masters

- Leverage an analogy with the physical behavior of flocks and shoals
- Adapt the physical rules of particle swarms to families of AVs
- Monitor safety thresholds to ensure separation using hazard indices • **Employ** information from hazard indices as safety trigger to execute changes in steering and throttle/braking inputs

Particle Swarm Optimization •

Meta-heuristic method based on an analogy with swarm movement. **Generates particles** to sample a nonlinear function and find location of the minimum

The algorithm is based on three rules:

- Maintaining **separation**: each particle moves to avoid collisions with other particles in the swarm;
- Maintaining alignment: each particle steers in the average direction which the swarm (or a neighboring sub-set of it) is pointing towards;
- Maintaining cohesion: each particle moves towards the average location of the entire swarm without drifting too far off the center

Adaptation to Families of AVs • Adaptation of PSO rules to families of AVs:

- **1.** Collision avoidance Maintaining separation to avoid collision with the nearby vehicles
- **2.** Heading selection Maintaining the weighted average heading to neighboring vehicles
- Velocity matching Match the average velocity of the neighboring vehicles

Schematic representation of the three rules concepts

The implementation of the three rules leverages the notion of Hazard Level or Index

Intuition: non-dimensional quantity that measures the closeness to an accident/preidentified adverse outcome

H(t) at every instant of time provides an index to quantify "how dangerous" the current system state is.

©Francesca M. Favarò – AUVSI 2018

Rule #3 : Velocity Matching

The problem is adjusting the speed at which the swarm is travelling to accommodate the new vehicle, and selecting the best distance between the vehicles

This rule is employed to define the geometry of the swarm in terms of relative distance between the vehicles, target average velocity, and safety margins employed

$$H(t) = \frac{SM_{time} + t_{acceleration}}{t_{passby}}$$

- t_{acceleration}: time for controlled vehicle to accelerate from initial speed to average speed of the swarm
- t_{passby}: average interval elapsed between the instants at which two consecutive vehicles in the swarm pass by the same point
- SM_{time}: a safety margin expressed in seconds

CHARLES W. DAVIDSON COLLEGE OF ENGINEERING

Risk and Safety Assessment of Autonomous Systems Lab

Implementation Chart

Implementation considers breakdown into two phases of creation of the swarm: an initialization/transient stage and a steady constant state with fixed number of vehicles

Summary of Contribution

Creation of ad-hoc rules for lateral and longitudinal control of families of AVs and device of four hazard indices for monitoring safety thresholds related to separation and collision avoidance, heading selection, and velocity matching

Function	Notes	Uses
	1D stopping distance along the	Reset of swarm target velocity
$d_{stop_A}(t)$	longitudinal axis to ensure	(module/value only) and
$H(t) = \frac{1}{d_B(t) - d_A(t)}$	sufficient separation	relative distance 1D steady
		condition
	2D collision avoidance through	Reset of swarm target velocity
$H_{i,i}(t) = \frac{\varepsilon_i + \varepsilon_j}{\frac{\varepsilon_i + \varepsilon_j}{\varepsilon_i - \varepsilon_j}}$	spheres of influence to ensure	and relative distance 2D steady
$\ d_i - d_j\ $	separation and cohesion	condition
	Angular and Lateral error function	Computation of maximum time
$H(t) = \frac{e_L + v(t)t\sin e_\theta}{\frac{W}{2}}$	to avoid lane departure/collision	of refresh for re-computation of
	with dividers	steering and
		acceleration/braking inputs
	Comparison of time for incoming	Transitory situation of vehicle
$H(t) = \frac{SM_{time} + t_{acceleration}}{I}$	vehicle to match velocity of the	entering the swarm – reset of
t _{passby}	swarm while avoiding collision	target velocity and relative
	with safety margin	distance in transient condition

Info and PI Contact

Email: francesca.favaro@sjsu.edu

This research was funded by the Leader Seed Grant program of the Mineta Transportation Institute, San Jose, CA