Joshua Auld, Mahmoud Javanmardi, Vincent Freyermuth, Ehsan Islam, Aymeric Rousseau – Vehicle and Mobility Simulations Group, Argonne National Laboratory

ABSTRACT

In this research, we explore the impact on mobility and energy use of wide-scale deployment of fully autonomous, privately owned vehicles. Such vehicles have a potential range of impacts in terms of traffic flow and transportation system performance, vehicle performance and energy use characteristics, and travel demand. We studied the combination of multiple effect of CAV deployment for a small metropolitan area over a variety of possible scenarios for baseline, near-term and longterm time-frames, demonstrating the range of possible impacts and exploring several potential mitigation strategies.

METHODOLOGY

- · POLARIS agent-based transportation simulator used to generate activities and traffic
- Mesoscopic traffic simulator updated to account for link capacity improvements from empirical studies and microscopic traffic flow studies
- Represent CAV impacts over a range of penetration levels under a variety of configurations (i.e. merging sections, on/off ramps, lane reductions, etc.).
- Optimization based intra-household vehicle sharing for CAV 5 assigns household's vehicles to household trips (for those with CAV 5, determined from vehicle choice model)
- POLARIS code generates and simulates dead-heading vehicle trips for CAV5 users
- Autonomie vehicle energy model used to estimate the energy consumption from CAVs

INTRA-HOUSEHOLD VEHICLE/RIDE SHARING BEHAVIOR MODEL

- Finds the optimum utilization of vehicles for household who own level 5 Avs:
- Assigns AVs to household trips, while minimizing the cost
- Included costs: energy, taxi, vehicle ownership, parking, value of time, ZOV charge
- Considers vehicle sharing as well as ride sharing
- Considers flexibility in start and duration of activities to modify schedules
- Allows vehicles to go home for parking when parking at activity location is costly
- Modes: auto, taxi, others(walk and transit if predetermined)
- Vehicles could travel to home for parking, if parking at activity location is expensive.
- Feasibility of travels in terms of time, between activity locations is considered

Changes to schedule

Vehicle ownership, fuel, ZOV tax: First

Fuel and ZOV tax: for last trip of

Fuel and ZOV tax: for trips from

Fuel and ZOV tax: Trips from an

Tax: ZOV trips between two

 $^{A_{j,b,e}}_{r,r}R_v$ Travel Time from Parking to $A_{j,b,e}$ at time

 $e_{j,b}$ by vehicle v (where vehicle v had gone to

 $\sigma_{i,a}$: optimal start time of activity $a,a\in A_i, i\in P$

 $\delta_{i,a}$: optimal duration of activity $a, a \in A_i, i \in P$

 $\varepsilon_{i,a} = \sigma_{i,a} + \delta_{i,a}$: optimal end of activity $a, a \in$

v=0 is reserved for taxi trips and also used for

bike/walk/transit mode that have been scheduled in

 $A_{i,a,m}^{A_{j,b,n}}T_v$: Travel from $A_{i,a,m}$ to $A_{j,b,n}$ by vehicle v

parking to an act

act to parking

activities

parking from $A_{i,a}$

Binaries:

Decision Variables:

each vehicle (from an act to

$$\sum \sum (|\boldsymbol{\sigma}_{i,a} - s_{i,a}| + |\boldsymbol{\delta}_{i,a} - d_{i,a}|) * Cost_{Time} +$$

$$\sum_{i}\sum_{j}\sum_{k}\sum_{A_{i,a,s}}^{m}T_{v}*\left(\textit{Cost}_{\textit{Fuel}}*^{A_{j,b,e}}_{A_{i,a,s}}R_{v}\right)+ \\ \textit{fuel cost for trips between} \\ \textit{activities}$$

$$\sum_{v=1}^{V}\sum_{v=1}^{a}\sum_{home}^{A_{i,a,e}}T_{v}*\left(\textit{Cost}_{\textit{CAV}}+\left(\textit{Cost}_{\textit{Fuel}}+\textit{Cost}_{\textit{ZOV}-\textit{Tax}}\right)*\frac{A_{i,a,e}}{\textit{Home}}R_{v}\right)+\frac{\textit{Vehicle ownership, fuel, ZOV tax: First trip of each vehicle (from home to an act),}}{\textit{Cost}_{\textit{CAV}}}$$

$$\sum_{v=1}^{l} \sum_{A_{i,a,s}}^{l} \prod_{i=1}^{l} \sum_{A_{i,a,s}}^{l} \prod_{i=1}^{l} \sum_{A_{i,a,s}}^{l} \prod_{i=1}^{l} \prod_{i=1}^{l$$

$$\sum_{v=1}^{V}\sum_{s}\sum_{s}\sum_{s}\sum_{rk_{j,b,s}}\sum_{r_{j,b,s}}\sum_$$

$$\sum_{v=1} \sum \sum_{A_{i,a,s}}^{Prk} T_v * (Cost_{Fuel} + Cost_{ZOV-Tax}) * \underset{A_{i,a,s}}{Prk} R_v +$$

$$\sum_{v=1}^{V} \sum_{A_{i,a,s}}^{i} \sum_{A_{i,a,s}}^{i} \sum_{A_{i,a,s}}^{A_{j,b,e}} Z_v * \left(Cost_{ZOV-Tax} * \underset{A_{i,a,s}}{A_{j,b,e}} R_v \right)$$

 A_i All activities belong to person $i \in P$ $A_{i,a}$ Activity a, belong to person $i \in P, a \in A_i$ $A_{i,a,s}$ Start of Activity a, belong to person $i \in P, a \in A_i$ $A_{i,a,e}$ End of Activity a, belong to person $i \in P, a \in A_i$ $s_{i,a}$: planned start time of activity $a, a \in A_i, i \in P$ $d_{i,a}$: planned duration of activity $a, a \in A_i, i \in P$ $e_{i,a} = s_{i,a} + d_{i,a}$: **planned** end time of activity $a, a \in A_i$ $S_{i,a}$: start time **threshold** of activity $a, a \in A_i, i \in P$ $D_{i,a}$: Duration **threshold** of activity $a, a \in A_i, i \in P$ $H_{i,a}$: Binary, 1 if activity a is a Home activity $a, a \in A_i$ V: Maximum number of vehicles in a household $A_{i,a,e}$ R_v Travel time from home to $A_{i,a,e}$ at time $e_{i,a}$ by

 ${}^{A_{j,b,n}}_{A_{i,a,m}}R_v$ Travel time from $A_{i,a,m}$ to $A_{j,b,n}$ by vehicle v at time t; $m, n \in \{s, e\}$, where $(m = s \rightarrow t = s_{i,a}, m = s)$

 $A_{i,a,s}^{Prk}R_v$ Travel time from $A_{i,a,s}$ to parking at time $S_{i,a}$ by vehicle v (after dropping off person i)

INTRA-HOUSEHOLD VEHICLE/RIDE SHARING MODEL IMPLEMENTATION

- Mixed Integer Programming (MIP) Optimization Model: Solved using Gurobi Optimization
- Coded in POLARIS in C++: household-level agent event for schedule optimization
- Runs for every household (with CAV5) in POLARIS:
- Uses time dependent travel times to check for feasibility of optimized schedules
- Uses Activity Attribute Flexibility Model, to determine perceived flexibility start time and duration)
- Generates new travel episodes for the ZOV trips between locations and to/from parking
- Replaces pre-planned SOV trips with shared AV trips as needed

ACTIVITY ATTRIBUTE FLEXIBILITY AND OTHER BEHAVIORAL CONSTRAINTS

- Determines perceived flexibility (flexible, inflexible) for five primary activity attributes
 - mode, who with, location, start time and duration
- Used to relax constraints in optimization model
- Developed for 5 activity purposes: work, personal, household needs, discretionary, and shopping
- Uses socio-demographic and travel pattern information of individuals
- Included in POLARIS behavioral modeling simulator

Activity Plan Horizon Model

SCENARIO ANALYSIS

	CAV Tech.		None		Level 4 ⁶		
	Year	Base	2040	2025	2040	2040	
	2015-base	x					
(e)	2025-base						
Demand (Year X CAV price)	2025-cav-low ¹			x			
S	2025-cav-high ²			x			
ar X	2040-base		х				
d (Ye	2040-cav-low ³				x	x	
man	2040-cav-high ⁴				x	x	
De	2040-cav-low-charge ^{3,5}					x	
	2040-cav-high-charge ^{4,5}					x	
1. 2.	2025 Low CAV scenario, price = \$7,500 2025 High CAV scenario, price = \$2,500						

Demar	2040-cav-high ⁴				x	x
De	2040-cav-low-charge ^{3,5}					x
	2040-cav-high-charge ^{4,5}					x
 }. }. }. 5.	2025 Low CAV scenario, pr 2025 High CAV scenario, pr 2040 Low CAV scenario, pr 2040 High CAV scenario, pr High road pricing tax - \$0.1 Not fully autonomous, no 2 Fully autonomous, ZOV allo to represent the full autom	rice = \$ ice = \$ rice = \$.0 per r ZOV, Vo owed, \	2,500 2,500 60 mile for OTT = 0	.5		OTT her

Assumptions for Case Study				
Description	Cost			
Parking	\$0/hr			
Vehicle Ownership	\$20/veh			
Energy	\$0.13/mile			
Taxi	\$3 + \$0.8/mile			
Value of Time	\$10/hr			

Low	60 min
Moderate	15 min
High	5 min
Low	60 min
Moderate	15 min
High	5 min
	Low Moderate

MOBILITY IMPLICATIONS OF HH SHARED-AV

- Under CAV5, **SOV** trips **significantly increase** due to ZOV trips for
- VMT increases at a higher rate: ZOV trips plus induced demand

COMPARISON TO BASELINE FOR LEVEL 4 AND 5 CAV SCENARIOS

- VMT and VHT significantly increase when CAV5s replace CAV4s, as penetration rate increases
- Improvements in vehicle powertrain technology (high tech: EV penetration, advanced powertrains, etc.) help
- Regulating ZOVs (pricing) adjusts the impact to some degrees

		Impacts of	Fuel use (gallon)			
	Total trips	VMT	VHT	Avg. Speed (mph)	Tech-low	Tech-high
2015-base	475,149	1,646,450	67,730	24.3	64,428	
2025_base	10.2%	11.0%	2.3%	8.5%	-25.1%	-46. <mark>4%</mark>
2040_base	18.5%	21.4%	15.7%	5.3%	-51 <mark>.1%</mark>	-82.5%
	Impacts of level 4 CAV				Fuel use (gallon)	
	trips	VMT	VHT	Avg. Speed (mph)	Tech-low	Tech-high
2025_base	524,054	1,841,289	69,029	26.7	48,259	37,940
2025_cav-low (T from 2025 base)	0.3%	4.1%	2.0%	0.1%	4%	8%
2025_cav-high (0 from 2025 base)	0.7%	7.4%	4.1%	3.1%	10%	13%
2040_base	569,590	2,003,973	80,515	24.9	31,493	11,243
2040_cav-low (– from 2040 base)	1.0%	8.5%	3.3%	5.0%	12.9%	16.6%
2040_cav-high (7 from 2040 base)	1.3%	12.1%	7.4%	4.4%	20.3%	26.0%

Impacts of level 5 CAV					Fuel use (gallon)	
	trips	VMT	VHT	Avg. Speed (mph)	Tech-low	Tech-high
2040_base	569,590	2,003,973	80,515	24.9	31,493	11,243
2040_cav-low	693,229	2,708,164	116,035	23.3	45,028	17,339
% change from L4	20.5%	24.6%	39.5%	-10.7%	26.7%	32.3%
2040_cav-high	748,624	3,043,093	140,625	21.6	52,331	21,053
% change from L4	29.7%	35.4%	62.6%	-16.7%	38.1%	48.6%
2040_cav-low-ZOV charge	683,055	2,632,974	112,650	23.4	44,300	16,649
% change from L5-low no charge	-1.5%	-2.8%	-2.9%	0.1%	-1.6%	-4.0%
2040_cav-high-ZOV charge	731,801	2,951,574	134,485	21.9	50,729	20,051
% change from L5-high no charge	-2.2%	-3.0%	-4.4%	1.4%	-3.1%	-4.8%

CONCLUSIONS AND POTENTIAL NEXT STEPS

- Full AV have potential to disrupt traffic by induced demand and **Zero Occupancy Vehicles** (ZOV) travel
- In the absence of data, **simulation** with reasonable assumptions is best way to analyze possible outcomes
- Optimization model of household vehicle and ride-sharing developed and implemented in POLARIS
- Simulate people's travel behavior changes in the presence of level 5 CAVs
- Increase SOV trips more than 33% (for low penetration rate) and 49% (for high penetration rate)
- Increase VMT by 36% and 52% respectively
- Negate much of the gains in reducing fuel consumption due to baseline vehicle technology improvement
- Introducing ZOV pricing of \$0.1 per mile could reduce impact somewhat (to 30.5% and 45.4% correspondingly)
- Results could vary by city and context, depending on their characteristics, as well as the assumptions used
- Future research will focus on analyzing additional scenarios for different regions, testing various regulations, Improving performance and developing models for analyzing changes in energy consumption based on physical/network characteristics of cities
- Next steps in current analysis
- Comparison across different vehicle technology levels
- Impact of CAV operating assumptions
- Parametric exploration of ZOV assumptions:
 - ZOV charge, activity flexibility capital discount for unused veh

