

Mafruhatul Jannat¹, Stephanie Roldan¹, Stacy Balk¹, and Karen Timpone² 1. Leidos, 2. Federal Highway Administration, U.S. Department of Transportation

Background

- Nearly 7,000 pedestrian and bicyclist fatalities in 2016 (18 percent of total traffic fatalities).
- Conditions known to increase risk of incidents:
 - Crowded urban settings (occlusion by vehicles/objects).
 - Low visibility (inclement weather, dusk/dawn, nighttime).
- Vehicle-to-Pedestrian (V2P) technologies use external sensors to detect at-risk pedestrians.
- System may alert the driver or intervene to reduce risk or severity of a crash.
- Sensors used include:
 - Visual cameras/computer vision.
 - Light detection and ranging (LIDAR) sensors.
 - Millimeter wave radar.
 - Direct wireless communications.
- Capability assessment of diverse and emerging V2P technologies is ongoing.

Project Goals

Establish a testbed for emerging V2P technologies at **Turner-Fairbank Highway Research Center (TFHRC)**

Phase I: Develop a test plan strategy and identify V2P systems currently available on the consumer market

Technology Scan

- Identified 86 known V2P technologies. (https://www.its.dot.gov/press/2015/v2p_tech.htm)
- Very few mature, market-ready, and publicly accessible products.

Eligibility Criteria for testing at TFHRC:

- Perform in at least one of four test case scenarios.
- Deliver some measurable communication output delivered to driver/vehicle or pedestrian/bicyclist.
- Function within the environment provided (TFHRC or offsite).

Assessment Plan developed from common V2P features to assess technology accuracy, reliability, safety features, and market readiness, and accessibility

Acknowledgements

This work was funded by U.S. DOT Federal Highway Administration Contract DTFH6116D00030

Towards Establishing a Testbed for Vehicle-to-Pedestrian (V2P) Technology

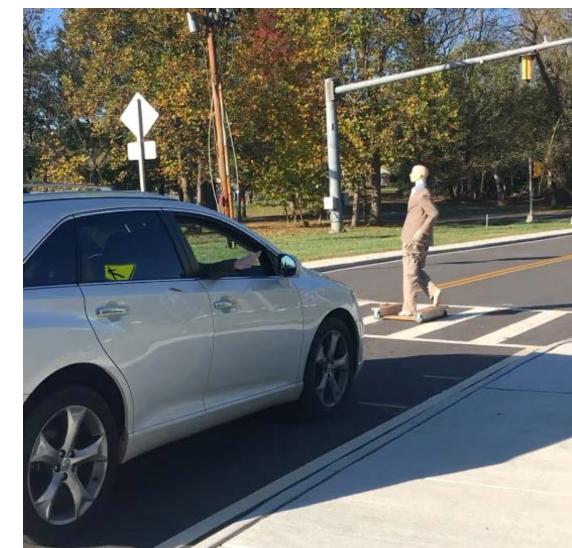
Phase II: Assess safety effectiveness of market-ready V2P systems validating the test plan strategy from phase I

Assessment Plan

• Identified four scenarios common to vehicle-pedestrian collisions.

Left Turn

Straight


Figure 1. Four test cases

Assessment Plan Validation

- Acquired camera-based after-market safety device with pedestrian detection feature.
- Computer vision algorithms detect human form; analyze movement, direction, and distance to identify crash risk.

System characteristics:

- Communicates to driver only.
- Visual alert displayed when pedestrian is detected.
- of crash detected.
- Driver's responsibility to intervene in response to alert.

and bicyclist (right).

Right Turn Parallel = Pedestrian/bicyclist

Source: FHWA

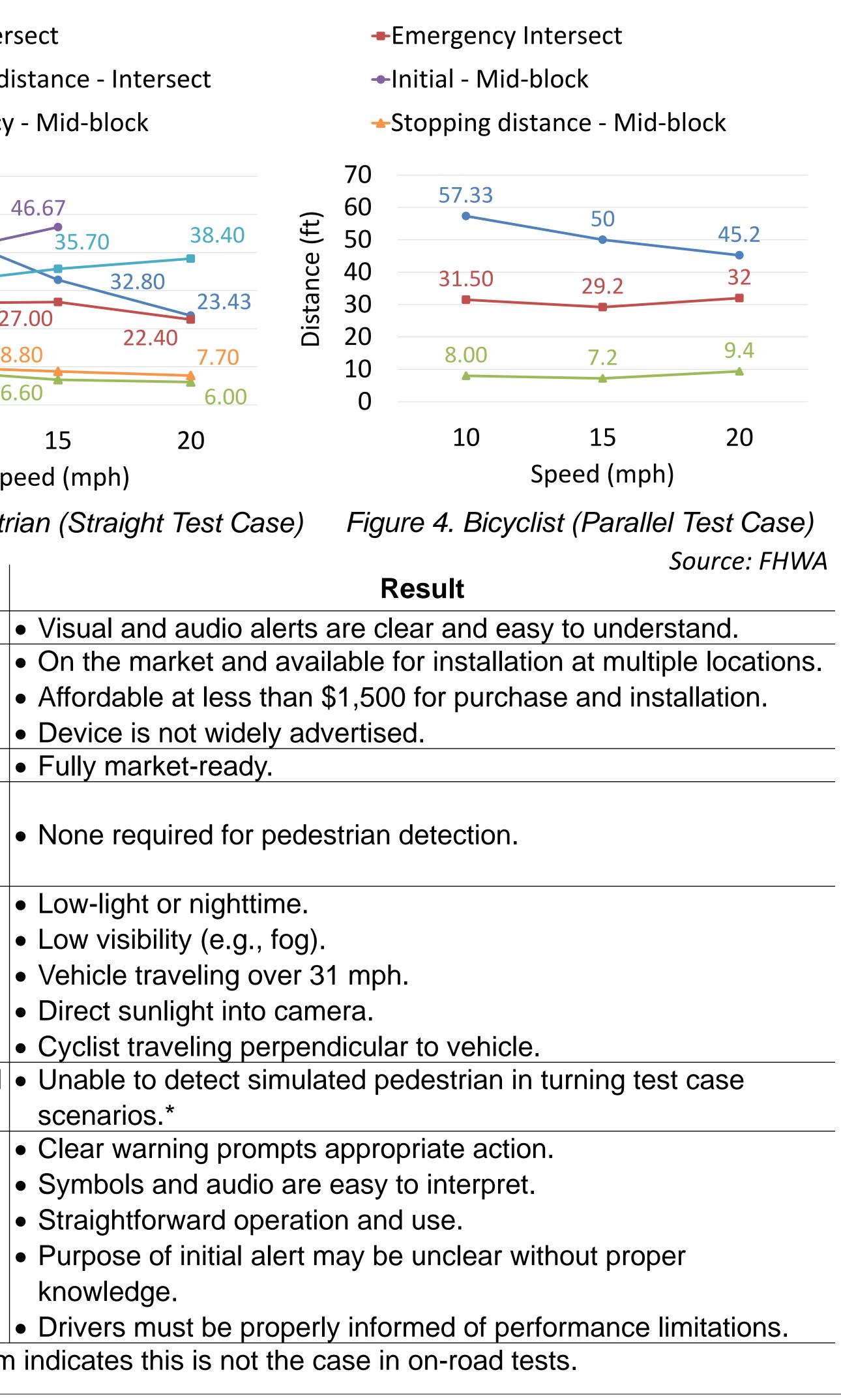

• Visual alert color change and audible alert when high risk

Figure 2a and 2b. Testing the validation system with simulated walking pedestrian (left)

Results **Alert and Response Distances** Initial Intersect Stopping distance - Intersect -Emergency - Mid-block 60 E7 22 47.00 (ft) 50 39.00 Ce 40 31.50 31.60 30 Dis 27.00 26.67 20 Ū 22.40 10 Speed (mph) Figure 3. Pedestrian (Straight Test Case) Measure Result Alert clarity User access to technology • Device is not widely advertised. • Fully market-ready. Readiness Institutional and None required for pedestrian detection. infrastructure requirements • Low-light or nighttime. • Low visibility (e.g., fog). Known nonfunctional Vehicle traveling over 31 mph. situations • Direct sunlight into camera. • Cyclist traveling perpendicular to vehicle. Additional discovered nonfunctionality scenarios.* Clear warning prompts appropriate action. Symbols and audio are easy to interpret. • Straightforward operation and use. Human factors assessment knowledge. *Note: Developer team indicates this is not the case in on-road tests. Conclusion • General testing plan validated with camera-based system. Simulated pedestrian characteristics limit some test cases. • System did not perform in turning test cases. • Specific technologies require tailored test approach.

Next steps: Acquire 3–5 additional V2P technologies, assess features, and test with customized plan.

Source: FHWA