Towards Establishing a Testbed for Vehicle-to-Pedestrian (V2P) Technology

Mafruhatul Jannat¹, Stephanie Roldan¹, Stacy Balk¹, and Karen Timpone²

1. Leidos, 2. Federal Highway Administration, U.S. Department of Transportation

Background
• Nearly 7,000 pedestrian and bicyclist fatalities in 2016 (18 percent of total traffic fatalities).
• Conditions known to increase risk of incidents:
 • Crowded urban settings (occlusion by vehicles/objects).
 • Low visibility (inclement weather, dusk/dawn, nighttime).
• Vehicle-to-Pedestrian (V2P) technologies use external sensors to detect at-risk pedestrians.
• System may alert the driver or intervene to reduce risk or severity of a crash.
• Sensors used include:
 • Visual cameras/computer vision.
 • Light detection and ranging (LIDAR) sensors.
 • Millimeter wave radar.
 • Direct wireless communications.
• Capability assessment of diverse and emerging V2P technologies is ongoing.

Project Goals
Establish a testbed for emerging V2P technologies at Turner-Fairbank Highway Research Center (TFHRC)

Technology Scan
• Identified 86 known V2P technologies. (https://www.its.dot.gov/press/2015/v2p_tech.htm)
• Very few mature, market-ready, and publicly accessible products.

Eligibility Criteria for testing at TFHRC:
• Perform in at least one of four test case scenarios.
• Deliver some measurable communication output delivered to driver/vehicle or pedestrian/bicyclist.
• Function within the environment provided (TFHRC or offsite).

Assessment Plan developed from common V2P features to assess technology accuracy, reliability, safety features, and market readiness, and accessibility

Assessment Plan Validation
• Acquired camera-based after-market safety device with pedestrian detection feature.
• Computer vision algorithms detect human form; analyze movement, direction, and distance to identify crash risk.

System characteristics:
• Communicates to driver only.
• Visual alert displayed when pedestrian is detected.
• Visual alert color change and audible alert when high risk of crash detected.
• Driver’s responsibility to intervene in response to alert.

Results

Alert and Response Distances

<table>
<thead>
<tr>
<th>Measure</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert clarity</td>
<td>Visual and audio alerts are clear and easy to understand</td>
</tr>
<tr>
<td>User access to technology</td>
<td>On the market and available for installation at multiple locations.</td>
</tr>
<tr>
<td>Readiness</td>
<td>Fully market-ready.</td>
</tr>
<tr>
<td>Institutional and infrastructure requirements</td>
<td>None required for pedestrian detection.</td>
</tr>
<tr>
<td>Known nonfunctional situations</td>
<td>Low-light or nighttime.</td>
</tr>
<tr>
<td>Low visibility (e.g., fog).</td>
<td></td>
</tr>
<tr>
<td>Vehicle traveling over 31 mph.</td>
<td></td>
</tr>
<tr>
<td>Direct sunlight into camera.</td>
<td></td>
</tr>
<tr>
<td>Cyclist traveling perpendicular to vehicle.</td>
<td></td>
</tr>
<tr>
<td>Additional discovered nonfunctionality</td>
<td>Unable to detect simulated pedestrian in turning test case scenarios.</td>
</tr>
<tr>
<td>Human factors assessment</td>
<td>Clear warning prompts appropriate action.</td>
</tr>
<tr>
<td>Symbols and audio are easy to interpret.</td>
<td></td>
</tr>
<tr>
<td>Straightforward operation and use.</td>
<td></td>
</tr>
<tr>
<td>Purpose of initial alert may be unclear without proper knowledge.</td>
<td></td>
</tr>
<tr>
<td>Drivers must be properly informed of performance limitations.</td>
<td></td>
</tr>
</tbody>
</table>

*Note: Developer team indicates this is not the case in on-road tests.

Conclusion
• General testing plan validated with camera-based system.
• Simulated pedestrian characteristics limit some test cases.
• System did not perform in turning test cases.
• Specific technologies require tailored test approach.

Next steps: Acquire 3–5 additional V2P technologies, assess features, and test with customized plan.

Acknowledgements
This work was funded by U.S. DOT Federal Highway Administration Contract DTFH6116D00030

Page dimensions: 4032.0x2808.0

Figure 1. Four test cases

Figure 2a and 2b. Testing the validation system with simulated walking pedestrian (left) and bicyclist (right).

Figure 3. Pedestrian (Straight Test Case)

Figure 4. Bicyclist (Parallel Test Case)

Source: FHWA