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PROJECT OVERVIEW
Objecti i ial changes in travel demand and energy
due to of and vehicles

(CAVs) at a national level

= Develop CAV deployment scenarios
- Highly automated vehicles: privately-owned, and shared
- Connected, partially vehicles, with
(CACC) and coordinated flow through intersections

adaptive cruise control

= Use economic/market model to estimate changes in travel and energy use (given
AV adoption levels) at a national scale

= Develop consumer adoption model for highly automated vehicles (national scale,
with segmen'a(ion)

= Deve ethods to
snmulanon results to the national \evel

detailed, regional

MOTIVATION

» CAVs may disrupt travel patterns, vehicle use and ownership, and even vehicle
design with large changes in energy consumption

= Economic theory and market models can provide credible estimates of possible
future changes in travel demand and energy use (Leiby & Rubin, 2018, Lin & Xie,
2018)

= Recent and ongoing analysis of CAVs under the U.S. Department of Energy Vehicle
Technologies Office-funded SMART Mobility CAVs Pillar are providing estimated
energy impacts at the local and regional levels (Auld et al., 2017)
- Methods are being developed to expand these results (and others as available) to
the national level

GENERAL APPROACH
Estimate potential changes in travel behavior and energy consumption
due to deployment of CAVs using top-down and bottom-up approaches

- Economic/Market Dynamics (“Top Down”) model
- Model adoption of CAVs and shared vehicles by consumer segment

+ Develop methods to expand regional simulation results using transferability modeling
and to aggregate results of detailed, regional case studies to the national level
(“Bottom-up”)
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(APPROACH TOP-DOWN ECONOMIC/MARKET DYNAMICS MODEL INITIAL RESULTS: \
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« For both manual and aulcmaled vehicles, the fuel use and annual distance driven
cost, but decline more rapidly with VMT-related cost/disincentive
+ Estimates of lrave\ demand are sensitive to assumed VOTT and other costs
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4 APPROACH: MODELING ADOPTION OF CAVS AND SHARED MOBILITY
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EXAMPLE RESULTS
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(" APPROACH: TRANSFERRING REGIONAL SIMULATION RESULTS TO NATIONAL LEVEL yeragsly JAvVerags age  Average )
- ° Cluster Daily Trip  Daily Trip Traver e Traver e
Disaggregated simulation results | Cluster regional population  Two scenarios Trip Rate (No CACC) Trp Rate (cAC) | Rate Rate  (minday) (miniday)
B el  Baseline (No CACC) NoCACC _ CACC _ NoCACC _ CACC
- Land use,buitt environment = w5 * CAGC all vehicles)
- Actiites and travel{trips, YMT) R ; . . T [ 397 786 1150
E— 2 ¢ Example rosults 4 | TovelTme(NochcT) | Tvel Tme(cac) 2 385 407 733 887
& national population for Cluster 3: 3 365 389 755 1032
o National-level travel patterns ] g I 816 896 1481 1634
Activity-based model (POLARIS) of 00 + Trp ate (rips per day) + In CACC scenario, many travelers make a few more
Chicago metro region for baseline and L gl peridey trips but trave\ for significantly longer times Ll 383 38 14 4.1
Cace A ot ol 2017 g +_Travel demand (vMT)
\_ scenarios (Auld et al., 2017) N i e A Ty ey P (Shabanpour et al., 2018) )

AUTOMATED VEHICLES'

SYMPOSIUM

SCENARIOS TO BE ANALYZED (OR UNDER CONSIDERATION)
= Base case: similar to Energy Information Administration Annual Energy Outlook Reference case

= Personal travel with different levels of adoption of cooperative adaptive cruise control (CACC) and
intersection control

= Personal travel with highly automated, privately-owned or shared vehicles (taxis) with different operational
design domain (allowable operating conditions)

Different levels of traffic control

SUMMARY/CONCLUSIONS
= An analytical model developed to describe the influence of CAVs adoption on Mobility (VMT) and fuel use
under a wide range of assumptions about how vehicle automation will change:
- Value of travel time
- Vehicle fuel economy and emissions
- Crash frequency
- Congestion

= The model accounts for travelers’ budget and time constraints and effects of taxes

. i lties of travel can influence travel demand (VMT) and resulting fuel use
- Estimates of travel demand are sensitive to assumed VOTT and other costs

= Costs and values of CAV technologies to consumers are used in the MA3T-MC model to assess potential
adoption by different consumer segments
- Adoption of CAVs, alt-fuel powertrains, and shared mobility options is estimated jointly for multiple consumer

segments

= Resullts of regional (metropolitan-area) transportation system simulations with CAVs are being transferred
to the national level
- Details from activity-based model are combined with national-level data

= An analytical framework to assess energy and mobility impacts of CAV nationally was demonstrated
- Considers technology progress in non-CAVs and CAVs fleet
- Caplures potential spatial and temporal energy impacts of CAVs on vehicle efficiency and vehicle use (VMT)

= These will enable analysis of scenarios to relate energy outcomes to assumed future conditions and
technology drivers
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