CACC Performance Analysis

Background
- Field Test of Cooperative Adaptive Cruise Control (CACC) on Transport Canada testy track for a variety of scenarios
- Data analysis conducted fuel consumption and CACC system performance with respect to those scenarios

Field Test Scenarios
- Fuel Saving Due to Aerodynamic Drag Reduction
- CACC speed and distance tracking error (or string stability) depends on speed changes: larger speed variation has larger tracking errors
- Constant T-Gap (D-Gap) following has reasonably good performance
- Consistent with the evaluation method using J-Bus fuel rate data

Performance Parameters
- Root Mean Square Error for both speed and distance tracking
- Maximum and Minimum Tracking Error

Conclusion
- Truck CACC showed significant energy savings for followers
- Leader also got fuel savings as D-Gap lowered below 12m
- D-Gap > 12m reduce more than 50% fuel consumption
- D-Gap > 10m while 2 m more
- Consistent with the evaluation method using J-Bus fuel rate data

Fuel Saving Due to Aerodynamic Drag Reduction
- Aerodynamic treatment with side skirts and boat tail
- Trailer aerodynamic treatment with boat tail and side skirt

Table 1
- Statistics of speed and distance tracking error for Cut-in between 1 & 2
- Speed Variation 35 mph [2.2 m/s] T-Gap 1.2 s [30 m]
- Veh ID 1 & 2 T-Gap 1.2 s [30 m]

Table 2
- Statistics of speed and distance tracking error for Cut-in between 2 & 3
- Speed Variation 35 mph [2.2 m/s] T-Gap 1.2 s [30 m]
- Veh ID 1 & 2 T-Gap 1.2 s [30 m]

Table 3
- Statistics of speed and distance tracking error for 4m D-Gap
- Speed Variation 35 mph [2.2 m/s] T-Gap 1.2 s [30 m]
- Veh ID 1 & 2 T-Gap 1.2 s [30 m]

Table 4
- Statistics of speed and distance tracking error for 6m D-Gap
- Speed Variation 35 mph [2.2 m/s] T-Gap 1.2 s [30 m]
- Veh ID 1 & 2 T-Gap 1.2 s [30 m]

Table 5
- Statistics of speed and distance tracking error for 8m D-Gap
- Speed Variation 35 mph [2.2 m/s] T-Gap 1.2 s [30 m]
- Veh ID 1 & 2 T-Gap 1.2 s [30 m]