Mixed Traffic Longitudinal Trajectory Control At Isolated Signalized Intersections

CONTRIBUTIONS

- A new concept of spatially and temporally heterogeneous IVSL design is proposed; i.e., a vehicle
may adopt different speed limits at different portions of a road segment at different times;

- Mixed traffic, i.e, CAVs and HVs, is considered in mixed traffic longitudinal trajectory control to
achieve the optimal system performance for the whole vehicle platoon.

INTRODUCTION

Traffic signals on urban highways force vehicles to stop frequently and accelerate/decelerate abruptly,
and thus causes excessive travel delay, extra fuel consumption and emissions, and increased safety
hazards.

This paper proposes a Longitudinal Trajectory Control (LTC) method with pre-fixed traffic signals. This
method dynamically imposes speed limits on some identified Target Controlled Vehicles (TCVs) with
Vehicle to Infrastructures (V2I) communication ability at two VSLs along an approaching lane. Essentially,
only TCVs' trajectories need to be controlled and the other vehicles just follow TCVs with Gipps’ car-
following model. In addition, queueing effect of HVs and CAVs’' market penetration rate are considered
iIn mixed traffic situations.

METHODOLOGY
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Fig. 1 Framework of VSL-LC system

Traffic dynamics:

» For TCV (specified lead CAV in platoon):
e s ar) < i (PGP (4, (1), 10, 5(0)), (P in (0) + d A}, if xa(t) € [Ly, L],
FGlpp(xn(t):xn—l(t):Sn(t)); otherwise-
» For non-TCV (HVs and part CAVs):

MIN{FS%PP (%, (t), X1 (t), 5, (£) ), FEPP (%, (), 0,L — x,, ()}, if t < (i, + 1)C;

: At) = ,
X, (t + At) FGlpp(xn(t)’ Xn—1(t), Sn(t))' otherwise.
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Location Optimization:

Joint objectives (M) Travel time (TT) and Fuel Consumption (FC):
minLlezM(Ll,L2)=a)TTT(L1,L2) =

S.t.
v 2
L -2 <J],<L.
24
v 2
0<L; <L,— e

2d
and X = {x, },en-

Solution:

Confines an effective range.

Ensure spacing for deceleration.
Subject to control measure.

3 (UFFC(L]_, LZ)

DIRECT method (Jones, Perttunen et al. 1993) is applied to numerically search for the optimal solution

NUMERICAL TESTS

Test 1 - Solution Performance

® Objective shape is not unimodal.

® But the variation is bounded continuous.
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Fig. 2 Objective M(L1,L2) vs. locations L1 and L2 and convergence of the DIRECT solution

Test 2 - System Performance

20 30 40
lterations

Solution converges to

optimal as iteration increases

Volume/Capacity 0.32 0.68 0.84 1.0 1.2
TTE(min) 75.55 93.20 114.47 121.25 124.93
FCE(liter) 8.30 10.33 12.30 12.76 13.08

MB(S) 33.49 41.40 50.46 53.18 54.72
TT4(min) 73.18 85.47 NAN NAN NAN
FC4(liter) 7.00 7.94 NAN NAN NAN

MA4(S) 31.40 36.42 NAN NAN NAN
TT"(min) 72.52 84.48 106.02 113.03 116.88
FC*(liter) 7.06 8.04 9.12 9.68 10.93

M*(S) 31.23 36.18 44.46 47.36 49.89

LY 0.72 12.06 231.13 374.94 504.55
v 759.57 758.26 762.82 761.77 769.84

ATTA 0.9% 1.2% NAN NAN NAN

AFCA -0.8% -1.3% NAN NAN NAN

AMA 0.5% 0.6% NAN NAN NAN

ATT* 4.0% 9.4% 7.4% 6.8% 6.4%

AFC* 15.0% 22.2% 25.9% 24.2% 16.4%

AM* 6.7% 12.6% 11.9% 11.0% 8.8%
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Fig. 3 Trajectories respect to different traffic levels.

ASL may cause excessive queue spillback under dense traffic conditions. LTC can circumvent this
disadvantage by optimally setting the speed slow down point according to traffic volume.

Test 3 — Market Penetration Rate Analysis

Improvements drop with the market penetration rate decreases, especially under 5%. And compared to
ASL, LTC is more robust.
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Fig. 4 Trajectories respect to different market penetration rates.
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Fig. 5 The improvement with market penetration rate for different objectives.

CONCLUSIONS

- This paper proposes a novel vehicle longitudinal trajectory control method (i.e. LTC) with spatially
and temporally heterogeneous design.

- DIRECT can find the global optimal solution due to the bounded continuous of objective function.

- LTC optimally balances trajectory smoothing and queue storage at different Volume/Capacity ratios
under different traffic demands.

- Market penetration rate does affect the effectiveness of LTC, and LTC performs more robust than ASL
at a low market penetration rate.



